ул.Луначарского
 vk.com

Как рассчитать прочность сварного шва

В производстве металлоконструкций самым надежным методом соединения между собой отдельных деталей является сварка. Прочность сцепления при этом обеспечивается межмолекулярным взаимодействием, возникающим под влиянием высокой температуры. Чтобы стыки (дорожки, швы) готового изделия получились качественными, перед началом работы должны быть правильно выполнены расчеты сварного шва. Точные вычисления нужны для выбора основных и расходных материалов, для понимания того, насколько надежной и монолитной будет конструкция.

Расчет сварного шва на срез производится по общепринятым стандартным формулам.

Какие параметры используются в расчете

В расчете на прочность сварных соединений необходим целый ряд показателей.

Их знание позволяет провести подсчеты с наименьшей погрешностью.

При этом учитывают следующие основные параметры:

  • Ry — сопротивление материала изделия с учетом предела текучести; это постоянная величина для каждого металла;
  • Ru — сопротивление материала в соответствии с временным сопротивлением; стандартный табличный показатель;
  • Rwy — сопротивление с учетом предела текучести;
  • N — предельно допустимая нагрузка, которую может выдержать сцепление;
  • t — минимальная толщина соединяемых деталей;
  • lw — максимальная длина сварного стыка, при вычислении ее уменьшают на 2t;
  • gс — коэффициент условий, которые преобладают на рабочем месте; стандартизированный параметр, присутствует в общепринятых таблицах, в частности, в методичках для сварщиков.

Процесс растяжения и сжатия металла вычисляют по формуле:

Если при изготовлении изделия свариваются детали из разных металлов, то в формулах используются Ry и Ru для материала с наименьшей прочностью. Аналогично поступают при включении параметров в расчете шва на срез.

При расчете на прочность необходим ряд показателей.

Кроме названных числовых показателей на надежность соединения влияют:

  • качество материала изделия;
  • правильно подобранные расходные материалы (присадки, электроды);
  • режим сварки, в т. ч. полярность и сила тока;
  • тщательность обработки заготовок — на кромке стыков не должно быть никаких деформаций и посторонних вкраплений;
  • соответствие сварного аппарата требуемой технологии сварки и мощности.

Такие характеристики обязательно берутся во внимание, от каждой из них зависит точность расчета качества сцепления.

Коэффициент прочности шва

Это показатель φ, являющийся отношением между собой прочностей сварной дорожки и основного материала. Его значение нормировано и определяется способом сварки и конструкцией стыка. Он принимается на основании Правил Госгортехнадзора и отражается в приложениях ГОСТов Р52857.1-2007, 14249-89 и 34233.1-2017.

Таблица 1. Коэффициенты прочности сварочных швов

Тип сварного соединения Значение φ
Контролируемый участок от общей протяженности шва:
100% 10-50 %
Стыковое одностороннее, выполненное ручной сваркой 0,9 0,65
Тавровое, с конструктивно предусмотренным зазором между деталями 0,8 0,65
Встык одностороннее, производимое с подкладкой из флюса или керамики, автоматической или полуавтоматической сваркой 0,9 0,8
Втавр или встык со сплошным двусторонним проваром, выполняемый автоматикой или полуавтоматикой 1,0 0,9
Стыковое с подвариванием корня шва или тавровый со сплошным проваром с 2 сторон, выполненные ручной сваркой 1,0 0,9
Одностороннее встык, во время сварки имеет со стороны корня шва металлическую подкладку, прилегающую к основному материалу по всей длине шва 0,9 0,8

Коэффициент прочности для дорожек, паянных мягкими и твердыми припоями с использованием аппаратов из цветных металлов, составляет 0,7 для композиционной пайки, 1 — для однородной.

Используемые формулы

Есть много формул, по которым производят расчеты для создания качественных сварных дорожек. В них используются показатели, определяемые не только типом шва, но и видом и толщиной основного материала, площадью и расположением стыкуемых деталей, предельными нагрузками, эксплуатационной температурой изделия и др. Уравнения для отдельных разновидностей сварных швов различаются.

Есть много формул, по которым производят расчеты.

Расчет прочности швов на выпуклых поверхностях

В производстве сосудов — труб различных емкостей — применяются стыковые сварные соединения. Сюда относятся швы на выпуклых днищах (меридиональные и хордовые) и на обечайках (продольные). Принятые стандарты и методы расчета на прочность таких изделий отражены в ГОСТ 34233.11-2017. Расчет сварного соединения выпуклой поверхности зависит от ряда показателей — марки и толщины стали, из которой изготавливается сосуд, внутреннего и внешнего давления на стенки, типа нагрузки и т. д.

Уравнение расчета допускаемого напряжения (измеряется в МПа) на примере цилиндрической обечайки для сосуда, работающего при однократных статических нагрузках и выполненного из низколегированной или углеродистой стали:

Данная формула применима только для сосудов из пластичных материалов в условиях использования металлов.

Зависимость от типа сварочного шва

Существует несколько вариантов сцепления металлических элементов в единую конструкцию. По расположению соединяемых деталей различают следующие виды сварных швов:

  1. Стыковой — наиболее рациональный, т. к. концентрация напряжения в шве при таком методе минимальна. Свариваются торцы деталей, в результате одна часть изделия продолжает другую.
  2. Угловой — соединяемые элементы располагаются перпендикулярно друг другу. Прочность здесь во многом зависит от верно рассчитанного предельного усилия.
  3. Тавровый — похож на угловой с той лишь разницей, что детали свариваются торцами. Такая дорожка прочная, экономичная и простая в выполнении.
  4. Нахлесточный — края сцепляемых деталей несколько находят друг на друга. Такой тип позволяет укрепить соединение и применяется там, где нужно сварить металл толщиной не более 5 мм.

Для каждого из названных типов расчет производится по индивидуальной формуле.

Прежде чем начинать вычисление прочности будущего сцепления, нужно рассчитать площадь его поперечного сечения. Для этого длину сварного соединения умножают на его толщину.

Соединение листов внахлест

Для расчета напряжения среза используют формулу:

где:

  • P — нагрузка на шов, Н;
  • [τ]’ср — допускаемое напряжение на срез, Па;
  • 0,7k — толщина шва в наиболее опасном сечении, см;
  • l — длина сварной дорожки, мм.

При соединении внахлест разделка кромок не требуется.

Из выражения понятно, что полученное напряжение на срез должно получиться меньше максимально допустимого.

Значение нагрузки P таково:

При расчете учитывают минимальную площадь сечения сварной дорожки в поперечнике. Это связано с тем, что сварочные материалы по прочности могут превышать основной металл.

Угловые конструкции

Такие соединения рассчитываются на основании их поперечного сечения, причем наименьшего, т. е. в наиболее опасном месте дорожки. Показатель устойчивости простого углового шва на изгиб, когда он нагружен лишь моментом M, вычисляется так:

где:

  • Wc — момент сопротивления опасного сечения дорожки (шва);
  • M — изгибающий момент.

Угловые конструкции рассчитываются на основании их поперечного сечения.

А напряжение простого углового соединения на срез запишется таким образом:

где:

  • M — нагружающий момент на срез;
  • Fc = 0,7kl — площадь сечения дорожки в опасном месте, мм²;
  • P — допустимая нагрузка на дорожку.

При расчете угловых сварных швов на срез применяется общепринятое выражение:

где:

  • N — максимальная нагрузка, давящая на линию сцепления;
  • с — коэффициент условий рабочей среды, значение указано в стандартизированных таблицах;
  • ßf, ßz — постоянные величины, не зависящие от марки металла, ßz = 1, ßf = 0,7;
  • Rwf — сопротивление срезу, табличная величина для разных материалов;
  • Rwz — сопротивление на линии стыка; стандартные, постоянные табличные величины;
  • kf — толщина дорожки, измеряется по линии сплавления;
  • Ywf — для стыка материала с сопротивлением 4200 кгс/см² составляет 0,85;
  • Ywz — 0,85 для всех марок стали;
  • lw — общая длина стыка, уменьшенная на 10 мм.

В определении длины сварочного сцепления на отрыв обязательно учитывают силу, направленную к центру тяжести. При этом площадь сечения выбирают в самом опасном месте дорожки, т. е. наименьшую.

Тавровые швы

Условие прочности сцепления втавр, выполненного встык и работающего на растяжение Р и момент M, выглядит так:

Формула для такого же, но не стыкового, а углового шва:

Тавровые швы могут быть односторонними и двусторонними.

Если тавровое соединение будет нагружено изгибом и крутящим моментом, то применяется уравнение:

Крутящая и изгибающая сила соответственно определяются следующими формулами:

Сварка на стыке

Расчет шва встык, который будет работать на сжатие либо на растяжение, выполняется по уравнению:

где:

  • l — длина сварочной дорожки, мм;
  • P — нагрузка, действующая на стык, Н;
  • s — толщина соединяемых деталей, мм;
  • [σ]’ р1сж1 — допускаемое для сцепления напряжение на растяжение либо сжатие, Па.

Допустимая действующая нагрузка P составит:

Стыковое сцепление, работающее на изгиб, рассчитывается по формуле:

где:

  • М — это изгибающий момент, Н/мм;
  • Wc — момент сопротивления расчетного сечения.

Если напряжение шва возникает и от изгиба М, и от сжатия либо растяжения Р, то оно определяется уравнением:

Тема 2.2. Растяжение и сжатие

§1. Продольные силы в поперечных сечениях

Под растяжением (сжатием) понимают такой вид нагружения, при котором в поперечных сечениях стержня возникают только продольные силы N, а прочие силовые факторы (поперечные силы, крутящий и изгибающий моменты) равны нулю.

Это самый простой и часто встречающийся вид деформации. Обычно он наблюдается когда внешняя нагрузка действует вдоль продольной оси стержня. Продольной осью стержня называется линия, проходящая через центры тяжести поперечных сечений.

Обычным является растяжение стержня силами, приложенными к его концам. Передача усилий к стержню может быть осуществлена различными способами, как это показано на рис. 1.

Рис. 1. Растяжение стержня

Во всех случаях, однако, система внешних сил образует равнодействующую F, направленную вдоль оси стержня. Поэтому независимо от условий крепления растянутого стержня, расчетная схема в рассматриваемых случаях (рис. 1, а, б) оказывается единой (рис. 1, в) согласно принципу Сен — Венана.

Если воспользоваться методом сечений (рис. 2), то становится очевидным, что во всех поперечных сечениях стержня возникают нормальные силы Nz, равные силе F (рис. 2, б).

Сжатие отличается от растяжения, формально говоря, только знаком силы Nz. При растяжении нормальная сила Nz направлена от сечения (рис. 2, б), а при сжатии — к сечению.

Рис. 2. Нормальная сила N

Растягивающие продольные силы принято считать положительными (рис. 3, а), а сжимающие — отрицательными (рис. 3, б).

Рис. 3. Знак продольной силы N

При расчете стержней, испытывающий деформацию растяжения, на прочность и жесткость при статическом действии нагрузки, надо решить две основные задачи. Это определение напряжений (от Nz), возникающих в стержне, и нахождение линейных перемещений в зависимости от внешней нагрузки.

Продольные силы (Nz), возникающие в поперечных сечениях стержня, определяются по внешней нагрузке с помощью метода сечений.

График, показывающий изменение продольных сил по длине оси стержня, называется эпюрой продольных сил (эп. Nz). Он дает наглядное представление о законе изменения продольной силы.

Осью абсцисс служит ось стержня. Каждая ордината графика — продольная сила (в масштабе сил) в данном сечении стержня.

Эпюра позволяет определить, в каком сечении действует максимальное внутреннее усилие (например, найти Nmax при растяжении-сжатии). Сечение, где действует максимальное усилие будем называть опасным.

Перед построением эпюр необходимо освободить брус, в котором будем строить эпюры от опорных связей (выделить объект равновесия) и приложить к нему все действующие внешние силы (активные и реактивные). Затем необходимо установить границы участков, в пределах которых закон изменения внутренних сил постоянный. Границами таких участков являются сечения, где приложены сосредоточенные силы или начинается и кончается распределенная нагрузка, а также сечения, где имеется перелом стержня.

Применяя метод сечений и учитывая правила знаков изложенные выше, получаем уравнения изменения внутренних сил в пределах длины каждого участка бруса. Затем, используя, полученные зависимости строим графики (эпюры) этих усилий. Ординаты эпюр в определенном масштабе откладываем от базисной линии, которую проводим параллельно оси бруса.

На основании метода сечений продольная сила в произвольном поперечном сечении стержня численно равна алгебраической сумме проекций внешних сил, приложенных к стержню по одну сторону от рассматриваемого сечения, на его продольную ось.

Причем проекция внешней силы берется со знаком плюс, если сила растягивает часть стержня от точки ее приложения до рассматриваемого сечения и, наоборот, со знаком минус — если сжимает.

§2. Напряжение в поперечных сечениях стержня

При растяжении или сжатии осевыми силами стержней из однородного материала поперечные сечения, достаточно удаленные от точек приложения внешних сил ,остаются плоскими и перемещаются поступательно в направлении деформации. Это положение называют — гипотезой плоских сечений. На основании указанного можно заключить, что все точки какого-либо поперечного сечения стержня находятся в одинаковых условиях и, следовательно, напряжения распределяются по сечению равномерно. Эти напряжения перпендикулярны поперечному сечению, а значит, являются нормальными напряжениями. Их значения найдем, разделив продольную силу N на площадь А: σ=N/A

Продольная сила N с помощью метода сечений всегда может быть выражена через внешние силы. В формулe следует подставлять алгебраическое значение N т.е со знаком плюс в случае растяжения и со знаком минус в случае сжатия

§3. Расчеты на прочность и жесткость при растяжении-сжатии

Прочность стержня при осевом растяжении и сжатии обеспечена, если для каждого его поперечного сечения наибольшее расчетное (рабочее) напряжение σ не превосходит допускаемого [σ] : σ=N/A≤ [σ],

где N — абсолютное продольной силы в сечении;

А — площадь поперечного сечения;

[σ] — допускаемое напряжение пр растяжении или сжатии для материала стержня.

Данное выражение определяет условие прочности при растяжении или сжатии.

С помощью этой формулы решается три вида зада (выполняется три вида расчета):

1. Проверка прочности (проверочный расчет). При заданных продольной силы N и площади поперечного сечения А определяют рабочее (расчетное) напряжение и сравнивают его с допускаемым [σ].

Превышение рабочего (расчетного) напряжения не должно быть больше 5% , иначе прочность рассчитываемой детали считается недостаточной.

В случаях, когда рабочее напряжения значительно ниже допускаемых σ<<[σ], получаются неэкономичные конструкции чрезмерным необоснованным расходом материала. Такие решения являются нерациональными. Следует стремится к максимальному использованию прочности материала и снижения материалоемкости конструкций.</p>

2. Подбор сечения (проектный расчет). Исходя из условия прочности можно определить необходимые размеры сечения, зная продольную силу N и допускаемое напряжение [σ]:

A≥N/[σ]

3. Определение допускаемой продольной силы. Допускаемое значение продольной силы в поперечном сечении стержня можно найти по формуле: [N]≤ [σ]·A

Значения допускаемых напряжение для некоторых материалов приведены в табл. 1.

Допускаемые напряжения назначаются на основе результатов механических испытаний образцов соответствующих материалов.

§4. Деформации и перемещения. Закон Гука

Рассмотрим однородный стержень с одним концом, жестко за­деланным, и другим — свободным, к которому приложена централь­ная продольная сила Р (рис. 4). До нагружения стержня его длина равнялась l — после нагружения она стала равной

(рис. 4). Величину называют абсолютной продольной деформацией (абсолютным удлинением) стержня. В большинстве случаев оно мало по сравнению с его первоначальной длиной l (∆l<<l>

Рис. 4. Абсолютное удлинение стержня

Если в нагруженном стержне напряженное состояние является однородным, т.е. все участки стержня находятся в одинаковых ус­ловиях, деформация

остается одной и той же по длине стержня и равной ε = Δl/l

Величина ε называется относительной продольной деформацией.

В пределах малых деформаций при простом растяжении или сжатии закон Гука записывается в следующем виде (нормальные напряжения в поперечном сечении прямо пропорциональны относительной линейной деформации

): σ=Eε

Величина Е представляет собой коэффициент пропорциональ­ности, называемый модулем упругости материала первого рода (модуль продольной упругости). Его величина постоянна для каждого материала. Он характеризует жесткость материала, т.е. способность сопротивляться деформированию под действием внешней нагрузки. Так как величина ε безразмерная, то E — измеряется в тех же единицах измерения то и напряжение, т. е. в Паскалях (Па). Значения модуля упругости E для некоторых конструкционных материалов приведены в табл. 2.

Δl=Nl/EA

Выведенное соотношение показывает, что удлинение (укорочение) при растяжении (сжатии) зависит от величины продольной силы N, поперечного сечения А стержня, его длины l и модуля продольной упругости Е. Произведение ЕА называется жесткостью сечения стержня при растяжении (сжатии).

При растяжении и сжатии изменяются и поперечные размеры стержня. Поперечный размер, первоначально равный a , уменьшается до a1. Изменение поперечно размера Δ a= a- a1, а поперечная деформация равна ε┴= Δ a/ a.

Экспериментально установлено что отношение поперечной деформации к продольной при упругом растяжении или сжатии есть величина постоянная и обозначается µ: µ= ε┴/ ε

Следует учитывать, что продольные и поперечные деформации всегда противоположны по знаку. Иными словами, при растяжении, когда продольный размер стержня увеличивается, его поперечный размер уменьшается, и, наоборот , при сжатии продольный размер уменьшается, а поперечный -увеличивается .

Величина µ называется коэффициентом поперечной деформации, или коэффициентом Пуассона. Коэффициент поперечной деформации для некоторых материалов имеет следующие значения:

сталь ….024-032,

медь….031-035,

бронза..032-035,

резина , каучук…047.

Страница 3: ВСН 139-80. Инструкцияпо строительству цементобетонных покрытий автомобильных дорог (29728)

в)

г)

Рис. 6. Конструкции поперечных швов сжатия и продольного шва

Рис. 7. Размещение штырей-анкеров в шве коробления (а), конструкция шва коробления (б) и схема крепления штырей-анкеров к продольным стержням на длину шва 3,75 м (в):

1 — штыри-анкеры из гладкой арматуры класса А-II диаметром 14-16 мм??

2 — продольные стержни т арматуры диаметром 6-8 мм; 3 — обмазка стержней-анкеров битумом?? 4 — деревянная рейка; 5 — шов коробления; 6 — шов сжатия?? 7 — продольный шов

2.25. Для повышения трещиностойкости и транспортно-эксплуатационных качеств покрытий, устраиваемых машинами на рельс-формах на дорогах II и III категорий при насыпях менее 3 м на основаниях из материалов, не укрепленных вяжущими, разрешается швы коробления чередовать со швами сжатия. При этом длину плит между поперечными швами следует назначать равной 3,5; 4 и 5 м, когда толщина покрытия равна соответственно 18, 20-22 и 24 см.

Чтобы повысить продольную устойчивость покрытия в швах расширения, рекомендуется вместо одного шва сжатия устраивать один шов коробления в плитах, примыкающих к шву расширения.

2.26. Ширина и минимальная глубина паза для заполнения мастиками должны назначаться в соответствии с данными табл. 6. При наличии в покрытии шва коробления ширину паза шва сжатия следует назначать исходя из суммарной длины двух плит между швами сжатия. Пазы швов коробления и продольных допускается заполнять мастиками на всю глубину.

Таблица 6

Тип шва Расстояние между швами?? м Ширина паза?? мм Глубина нарезки паза в долях от толщины покрытия
??5-8 8-12 ??0??25
Шов сжатия 8-12 15 ??0??25
15-20 20 ??0??25
Шов коробления 3??5-6 3-5 ??0,33
Шов расширения По табл. 4 33-35 До верха доски — 30-55 мм
Продольный шов 3-5 0??25-0,33

Примечание. Ширину паза швов сжатия допускается назначать по расчету, но не менее 3 мм.

2.27. На дорогах I-III категорий, при насыпях от 3 до 5 м, а также в зоне перехода насыпи в выемку на участке не более 20-40 м (в зависимости от глубины выемки и поперечной косогорности, кроме случаев, указанных в п. 2.28) бетонные покрытия в умеренном и континентальном климате следует устраивать из плит длиной 3,5; 4 и 5 м и толщиной соответственно 18, 20-22 и 24 см. В этих случаях при бетонировании комплектом машин на рельс-формах рекомендуется каждые две плиты соединять швом коробления, т. е. шов коробления устраивать только через шов сжатия, что позволит повысить транспортно-эксплуатационные качества и продольную устойчивость покрытия из коротких плит.

2.28. На дорогах I-III категорий с насыпями высотой более 3 м, из скальных грунтов, насыпями на болотах, построенными при частичном выторфовывании, насыпями выше 5 м из любых грунтов, у путепроводов через железные дороги в пределах до 200 м при различной высоте насыпи, а также на участках дорог индивидуального проектирования (где ожидаются неравномерные осадки земляного полотна) покрытие следует устраивать из плит длиной от 5 до 7 м и армировать их стальными плоскими сетками с расходом продольной арматуры на 1 м2 покрытия согласно табл. 7 и схемам армирования, приведенным на рис. 8.

2.29. На отдельных участках дорог I и II категорий с большой интенсивностью движения — соответственно более 10000 и 5000 авт./сут (на подходах к крупным городам) наряду с неармированными допускается устраивать покрытия из армированных плит длиной от 10 до 20 м с расходом продольной арматуры на 1 м2 покрытия согласно табл. 7.

В плитах длиннее 12 м допускается снижать толщину армированных покрытий на 2 см по сравнению с неармированными покрытиями толщиной 22-24 см.

Таблица 7

Длина плита?? м
Толщина плиты?? см 5 8 10 15 20
Расход продольной арматуры?? кг/м2
24 2??3 2??8 4??1
20-22 1??8 2??0 2??5 3??7 4??5
18 1??2 1??4 1??7 2??5 3??4

Примечания: 1. Количество арматуры установлено из условия раскрытия трещин до 0,2 мм с целью предотвращения коррозии.

2. При промежуточной длине плит расход арматуры должен назначаться по интерполяции.

2.30. Покрытие шириной 7-7,5 м следует армировать сетками не шире 2300 мм. При длине плит до 7 м сетки следует располагать вдоль продольного шва и краев плит с перепуском (нахлесткой) стыков в продольном направлении на 30 см. В плитах длиннее 10 м сетки необходимо размещать равномерно по ширине покрытия и не доводить до поперечных швов на 50 см (расстояние между сеткой и штыревым соединением в поперечном шве должно быть 25-30 см).

Минимальное и максимальное расстояние между осями рабочих продольных стержней в сетках допускается соответственно 100 мм и 200 мм. При несплошном армировании покрытия, которое рекомендуется на дорогах II и III категорий с интенсивностью движения до 5000 авт./сут. и насыпями выше 5 м?? в сетке, укладываемой вдоль края одной плиты, должно быть не менее семи продольных стержней, а вдоль продольного шва одной плиты не менее трех стержней (см. рис. 8, б). Наибольшее расстояние между осями поперечной гладкой арматуры диаметром до 6 мм должно быть равно 50 см.

Рис. 8. Примерные схемы армирования плит длиной до 7 м

2.31. В однослойных покрытиях сетки необходимо укладывать на 6 см ниже верхней поверхности плит, в двухслойных — между верхним и нижним слоями. В плитах длиннее 8 м сетки допускается располагать на уровне половины толщины покрытия.

При строительстве покрытия машинами со скользящими формами разрешается армировать только продольными стержнями, располагая их на уровне половины толщины покрытия.

2.32. С целью более эффективной работы плит длиной 4??5 и 6-7 м допускается применять плоские сетки длиной соответственно 2,5; 3 и 3,5 м при общем расходе арматуры на всю плиту согласно данным табл. 7. Такие сетки необходимо укладывать в средней части плиты с равным удалением концов сетки от середины плиты (см. рис. 8, а и 8, в). Схемы армирования, изображенные на рис. 8, а и 8, б, различаются по диаметру арматуры продольных стержней при одинаковой их массе на 1 м2 плиты. При этом на 1 м2 покрытия, построенного на основании из грунтов, укрепленных вяжущими?? расход арматуры допускается уменьшать на 15%.

2.33. Для армирования покрытий следует применять плоские сварные сетки, изготовляемые на заводе или на месте строительства, с продольной рабочей арматурой из горячекатаной стали периодического профиля класса А-II. Сетки заводского изготовления должны подбираться по ГОСТу на сварные сетки для армирования железобетонных конструкций с расходом арматуры, указанным в табл. 7. Длину плоских сеток по осям крайних поперечных стержней следует назначать исходя из удобства работы, и оговаривать в заказе.

Для сеток, изготовляемых на месте строительства количество арматуры следует подбирать по табл. 7. При изготовлении сеток на месте строительства не допускается применение электросварки в местах пересечений стержней.

2.34. При строительстве покрытий на дорогах II категории с основаниями из песка и гравийно-песчаных смесей края плит, примыкающие к обочинам, следует армировать двумя стержнями из арматуры периодического профиля диаметром 12 мм. Стержни необходимо располагать на 5 см выше подошвы плит, при этом первый стержень должен быть на расстоянии 10 см от боковой грани плиты, а второй — на 20 см от первого. Стержни не доводят на 50 см до поперечных швов.

При укреплении обочин монолитным бетоном в соответствии с указаниями СНиП на проектирование автомобильных дорог в них необходимо устраивать швы сжатия и расширения без армирования как продолжение швов сжатия или расширения покрытий.

2.35. Толщину бетонных оснований разрешается назначать по расчету, приведенному в «Методических рекомендациях по проектированию и строительству дорожных одежд с асфальтобетонными покрытиями на основаниях из бетона разных марок» (Союздорнии. М., 1971).

2.36. В бетонных основаниях необходимо устраивать продольные и поперечные швы сжатия из бетона марок 150-200. Расстояние между швами сжатия должно быть 5 м при основании толщиной 20 см и более и 4 м, если оно тоньше 20 см. Швы сжатия и продольные следует устраивать в свежеуложенном бетоне, закладывая в них прокладки из изола или полиэтилена. В швах сжатия и продольных необходимы штыревые соединения. Количество штырей, их размеры и порядок размещения следует принимать такими же, как при устройстве бетонных покрытий.

2.37. Расстояние между швами расширения в бетонных основаниях следует назначать по табл. 8.

Таблица 8

Климатические условия строительства Марка бетона основания Расстояние между швами расширения
Покрытие и основание, устраиваемые при температуре воздуха выше +5°С в течении одного строительного сезона Основание из бетона марок 75-200 Швы расширения не устраивают
Бетонирование в зимних условиях при температуре воздуха от +5 до -10°С Основание из бетона марок 150-200 40 м — в континентальном климате; 60 м — в умеренном климате
Бетонирование в любое время года с устройством покрытия через 1-3 года Основание из бетона марок 150-200?? швы сжатия или поперечные трещины в основании подвержены засорению песком, щебнем и др. 30-40 м
Основание из бетона любых марок, независимо от сезона бетонирования, примыкающее к мостам, путепроводам, либо пересекающее дорогу с покрытиями или основаниями жесткого типа в одном уровне Перед мостами и у пересечения дорог устраивают не менее 3 швов расширения через 1-2 плиты или 15-20 м, если перед ними в основании длиной более 100 м не устроены швы расширения

3. ТРЕБОВАНИЯ К МАТЕРИАЛАМ ДЛЯ

БЕТОННЫХ ПОКРЫТИИ И ОСНОВАНИЙ

Бетон

3.1. Требования к бетону покрытий и оснований и материалы для его приготовления должны соответствовать указаниям ГОСТ на дорожный бетон. Марку бетона по прочности следует назначать в соответствии с табл. 9.

Таблица 9

Дороги I и II категории Дороги III категории
Характер работы бетона Однослойное или верхний слой двухслойного покрытия Нижний слой двухслойного покрытия Однослойное или верхний слой двухслойного покрытия Нижний слой двухслойного покрытия
Марка бетона
Растяжение при изгибе 50 40 45 35
Сжатие 400 300 350 250

Примечания: 1. На дорогах II категории, если в первые три года эксплуатации бетонного покрытия интенсивность движения не превысит 3000 авт./сут., допускается применять марку бетона по сжатию 350 и по растяжению при изгибе 45.

2. При подборе состава бетона с добавками ПАВ допускается снижать предел прочности бетона при сжатии на 10%, сохраняя проектную марку по прочности на растяжении при изгибе.

Для строительства оснований усовершенствованных капитальных покрытий следует применять бетон, марки которого по прочности соответствуют указаниям ГОСТ на дорожный бетон.

3.2. Морозостойкость бетона однослойных и верхнего слоя двухслойных покрытий, а также оснований усовершенствованных капитальных покрытий должна соответствовать требованиям ГОСТ на дорожный бетон.

3.3. Требуемая морозостойкость бетона обеспечивается применением материалов для его приготовления в соответствии с нормами ГОСТ на дорожный бетон, проектированием состава бетонной смеси по методике, изложенной в настоящей Инструкции, обязательным применением воздухововлекающих ПАВ, строгим соблюдением содержащихся в Инструкции правил приготовления, транспортирования, распределения и уплотнения смеси, а также своевременным и эффективным уходом за бетоном в процессе его твердения.

3.4. Испытание на морозостойкость должно производиться до начала строительства при подборе состава бетона на материалах, намеченных к использованию в строительстве покрытий.

3.5. Для повышения морозостойкости и стойкости бетона против совместного действия растворов хлористых солей, применяемых для борьбы с гололедом, и мороза, а также для улучшения технологических свойств бетонной смеси должны применяться комплексные (совместно пластифицирующие и воздухововлекающие) добавки ПАВ в соответствии с указаниями ГОСТ на дорожный бетон и табл. 10 Инструкции.

Таблица 10

ПАВ Содержание ПАВ, % массы цемента Примечание
Концентраты сульфитно-дрожжевой бражки (СДБ) 0,15-0,25 В расчете на сухое вещество
Мылонафт 0,05-0,1 В расчете на товарный раствор, содержащий 45-50% воды
Асидол-мылонафт (после омыления или эмульгирования) 0??05-0,1 То же
Нейтрализованная воздухововлекающая смола (СНВ) 0??005-0,03 В расчете на сухое вещество
ГКЖ-94 0,1-0,2 В расчете па исходное вещество 100 %-ной концентрации

Литература:

  1. З.С. Смирнова, Л.М. Борисова, М.П. Киселева и др. Противоопухолевая активность соединения ЛХС-1208 (N-гликозилированные производные индоло[2,3-а]карбазола) // Российский биотерапевтический журнал 2010. № 1. С. 80.
  2. Мирский, «Медицина России X—XX веков» (Москва, РОССПЭН, 2005, 632 с.).
  3. Киржанова Е. А., Хуторянский В. В., Балабушевич Н. Г., Харенко А. В., Демина Н. Б. Методы анализа мукоадгезии: от фундаментальных исследований к практическому применению в разработке лекарственных форм. Разработка и регистрация лекарственных средств. 2014; 3(8): 66–80. DOI: 10.33380/2305-2066-2019-8-4-27-31.
  4. https://svarkaved.ru/tekhnologii/shvy-i-soedineniya/kak-rasschitat-prochnost-svarnogo-shva.
  5. https://www.sites.google.com/site/tehmehprimizt/lekcii/soprotivlenie-materialov/rastazenie-i-szatie.
  6. https://dnaop.com/html/29728_3.html.
  7. Moustafine R. I., Bukhovets A. V., Sitenkov A. Y., Kemenova V. A., Rombaut P., Van den Mooter G. Eudragit® E PO as a complementary material for designing oral drug delivery systems with controlled release properties: comparative evaluation of new interpolyelectrolyte complexes with countercharged Eudragit® L 100 copolymers. Molecular Pharmaceutics. 2013; 10(7): 2630–2641. DOI: 10.1021/mp4000635.

Ссылка на основную публикацию
Похожее

Стоматология
ул.Луначарского
Починки, Нижегородская область

© 2011- Стоматология novayastom.com